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Grouped Data, Content and C

» Data content naturally present themselves in groups
* From now refer to groups as documents

b

To Wong Binghao- My Best Friend.

« previous entry | next entry »
Mar, 15th, 2010 | 11:44 am
Recent Entries =

mood: H grateful
Friends w

music: Glee Cast: Sweet Caroline
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User Info im trying to think of a way to begin this without coming across s an obessed stalker but.. what the
heck, i dont really give a damn what people think anymore.

TMISS YOU WONG BINGI
you've been in there for abolt 2 weeks alr, & i miss you dreadfully.
idont even think you'l be reading this, but just wanted to get it off my chest haha.
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Grouped Data, Content anc

» Goal: jointly discover clusters contents and contexts (e.g., words and
spatial locations.

= Multiple advantages:
» Context-aware topic modelling of contents
o Context clusters sharing content topics
* Infer context given content and vice-versa

= Currently, no principled way for jointly model both contents and
document contexts.



Context clustering: DP Mix

e Infinite mixture model.

e Random measure

G~DP(aH) 6,5G x;~ F(.|6;)

» Random partition (Chinese Restaurant Process)

z ~ CRP(a), Ve € 2,0, ~ H

CRPs(z | @) = rroreyo™ [leea T (Ie)

e Stick-breaking
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Content Topic Modelling: H

 Cluster contents/words into topics, shared across
o documents.

& » Do not cluster documents, i.e., P(G; = G;/) =0
7#

e Cannot exploit context during topic modelling.

a_ﬁ@t@ « Document clustering may be achieved in a cascaded
fashion:
e Find content topics
6,) P

 Find topic-mixing coefficients for each document
» Clustering documents based on these coefficients




S  Use DP as a base measure of another DP:
(%) n G ~ DP(aDP(vQyg))

* G Is discrete, but its atoms are measures: they are
content-generating distributions.

# e Drawing from discrete G effectively clusters documents:

1

P(Qj=Qj1) ==

a+1

e Documents in the same cluster have the same content-
generating mixture distributions Q;

* Impose a DP prior for Q, enable Q; (s) in different
documents to share topics.




Joint Content and Context

» Pairing context (document-level) with content (word-level) is unnatural
since they lie on different levels.

» One possibility: treat context as index for distributions over contents
e But, raw contextual data cannot be used as index (e.g., noisy tags, continuous
location coordinates)
= Our idea: introduce distributions over contexts

e Context cluster acts as an index into a distribution of contents.

* This allows context (time/space) to influence both topics and document
clusters.

= How to make this concrete?



Joint Content and Context Mode
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Joint Content and Context

S
(%

H x DP(vQy)

«

@
&

context

content IV

10

 Form a product of context-generating base-measure
and content-generating DP: H x DP(vQ,)

e Use this as a base-measure in the nested DP
framework.

e Marginalizing content yields a DP mixture over context.

e Marginalizing context yields an nDP mixture of
contents

e See paper for proof.



Model representation

Stick-Breaking View
O Variables sampled during collapsed Gibbs
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Application |I: document mode

" PNAS dataset
e 79,800 documents (only titles and timestamps)
» VVocabulary size is 36,782
e Content observation is word
o Context observation is timestamp (last 90 years, 1915 — 2005)

= NIPS dataset

e 1740 documents
* VVocabulary size is 13,649
e Content observation is word

* Three types of context information:
* Timestamp (1987 — 1999)
» Author information (2037 unique authors)
o Titles
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Perplexity Evaluation

13

Perplexity (on words only)
Method PNAS I];K,Mt); NIPS L4 M) Feature used
HDP (Teh et al., 2006b) 30275 | (—86) | 1922.1 | (—,108) words
npTOT (Dubey et al., 2012; Phung et al., 2012) | 2491.5 | (—,145) | 1855.33 | (—,94) | words+timestamp
MC? without context 1742.6 | (40,126) | 1583.2 | (19,61) words
MC? with titles - — 1393.4 | (32,80) words-title
MC? with authors - — 1246.3 | (8,55) words+authors
MC? with timestamp 895.3 | (12,117) | 984.7 | (15,95) | words+timestamp

Note: missing results are due to title and author information not available in PNAS dataset).

(K,M): (# document clusters, #word topics).



Time as Context
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Author as Context

author topic —e

title - year ————e

three top word topics ——
conditional on the author topic

J Ordan ] M Ghahramani.Z

Jaakkola.T Cohn.D Wolpert.D Meilam

On the use of evidence in neural networks [1993]

Supervised Learning from Incomplete Data via an EM [1994]
Fast Learning by Bounding Likelihoods in ... Networks [1996]
Factorial Hidden Markov Models [1997]

Estimating Dependency Structure as a Hidden Variable [1998]

Maximum Entropy Discrimination [1999]

recognition  hidden likelinood trained

word data classifier propagation net em
data context recognition probability
state images models clustering hmm mip

time methods approximation step

learning update bound convergence bayesian input
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Application Il: Image Clustering

= NUSWIDE 13-animal dataset

» 13 classes (2054 images) Purity Rand-Index
« Content: SIFT (500 dimension) . Y E -
« Context: tags (1000 dimension) .., _ | o E 5
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Influence of Context

= \What happens when the amount of context varies?
* Easy to implement when some contexts are missing
» Vary the percentage of context missing from 100 to O

0% 0.407 0.298 0.901 0.157
25% 0.338 0.245 0.892 0.149
50% 0.32 0.236 0.883 0.137
75% 0.313 0.187 0.860 0.112

100% 0.306 0.188 0.867 0.119

« Big jump from 0 to 50%, but after that seems to be negligible,
suggesting a good cut-off for computational saving.
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Conclusion

= Jointly cluster documents and discover content topics while exploiting
context
* Principled framework to leverage contextual information
 Demonstrate the importance of context even during topic modelling of contents.

» Applicable to many types of contexts (time, location, tags, ages, patient’s
medical information).

* Fully nonparametric Bayesian
« Automatically infers dimensions of latent structures (i.e., #document clusters,
#topics).
» An elegant framework that combines DP and nDP with nice marginalization
property.
» Future work
» Readily to generalize to arbitrary grouping levels with nested contexts.
» Multilevel supervised learning: multilevel regression and classification.
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