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Qubits based on semiconductor quantum dot devices are promising building blocks for the realisation of
quantum computers. However, measuring and characterising these quantum dot devices can be challen-
ging and laborious for the experimentalists. In this paper, we develop an elegant application using deep
reinforcement learning for controlling the measurement of quantum dot devices. Specifically, we present
a computer-automated algorithm that measures a map of current flowing through a double quantum
dot device for different settings of its gate electrodes. The algorithm seeks particular features called
bias-triangles indicating the device is in the right operating regime of realising a qubit. Our approach
requires no human intervention and significantly reduces the measurement time. This work alleviates
the user effort required to measure multiple quantum dot devices, each with multiple gate electrodes.

Introduction

In quantum computing, information is encoded in quantum bit (or qubits). A qubit is a two-state quantum-
mechanical system, embodying the superposition that is peculiar to quantum mechanics. Success in quantum
computing relies on high fidelity physical qubits which can be realised in many material systems 1–3. One of
the most promising is gate-defined semiconductor quantum dots 4, 5. In these devices, qubits are encoded in
electron spins, which are confined and controlled by gate electrodes 6–10.

However, operating such quantum dot devices can be challenging and time-consuming. This is because
semiconductor quantum devices operate using individual electrostatic gates with a relatively large gate voltage
range. In addition, the quantum dot systems are often under the unavoidable noise dynamics. The correct
gate voltages setting for the targeted bias-triangles can vary with time, temperature and environment factors in
the device. The voltages applied to these gates must be carefully set to produce an electrostatic confinement
potential so that a qubit can be realised 4, 11. The current practice of characterising the gate voltage parameter
space is time-consuming, with the decision of how to adjust the gate voltages made by the experimentalists,
based on experience. However, in the huge search space of gate voltages, such ideal quantum dots are like
finding a needle in a haystack.

Recent progress in using computer-support methods to tune quantum dot devices has been demonstrated
5, 12–16. There have also been first steps towards automating device measurements using machine learning
(ML) 17. However, the potential of reinforcement learning in device measurement is unexplored. Tremendous
progress in machine learning (ML) algorithms suggests that such techniques may be used to accelerate the
experimental control from a de novo device to a fully controlled device, replacing the gross-scale heuristics,
developed by experimentalists to deal with tuning of parameters particular to experiments.

The emerging field of deep reinforcement learning 18 has led to remarkable empirical successes in rich
and varied domains like robotics 19, strategy games 20, 21, and multi-agent interaction 22, 23. Existing literature in
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Figure 1: Left: While the device has eight gate electrodes, we use two main gates (pink color) and an additional
gate (green color) that control the quantum dot charge states, labelled as Gate A, Gate B and Gate C. Right:
An example of the electric current measurement as a function of two gates. The bias-triangles (in a double
quantum dot regime) are our target of interest. The unit in each axis is mV. The target bias-triangles (Right) is
found after the current going through the double quantum dot region (Left).

quantum technologies has initially used deep reinforcement learning for controlling quantum logical gates 24, 25.
To the best of our knowledge, reinforcement learning has never been used to control the real time measurements
of a quantum device where the automated decision making in RL can be beneficial for the experimentalists.

We develop a new paradigm using deep reinforcement learning for controlling the measurement pro-
cess of quantum gate electrode voltages that currently relies on human heuristics. Our algorithm can make
the optimal decisions of which regions to measure next to find the bias-triangles using the fewest number of
measurements. Thus, our approach is efficient in that it selectively measures a small region of the gate voltage
space. This optimal decision establishes a closed-loop system for experimental initialisation without the need
for human intervention. Our major contribution can be summarised as twofold. (1) We develop the first deep
reinforcement learning for controlling the quantum device measurement in real time. (2) We identify the sta-
tistical features representing different states of the quantum device which are robust across different quantum
device architectures. (3) We extend and demonstrate the applicability of our system in controlling three gate
voltages. Bringing machine learning to automate discovery rather than using a brute-force approach has the
potential to substantially accelerate scientific progress in quantum technology.

The quantum dot device

Our quantum dot devices are defined in 2-dimensional electron gas by Ti/Au gates electrodes on top of a
GaAs/AlGaAs heterostructures 26, 27, as shown in Fig. 1. By applying a negative voltage to the gate electrodes,
the electric field depletes the electron gas creating a confinement potential for the double quantum dot. The
confinement potential is controlled by the gate voltages to create two regions (one for each quantum dots) of
few nanometre size, relatively isolated from the environment by electrostatic barriers. The small size of the
quantum dot leads to a significant charging energy that defines discrete energy levels for electrons in both
quantum dots. The current flowing thought the double quantum dot depends on the strength of the barriers and
the energy levels in the quantum dots 28. It is maximal when an energy level of both quantum dot aligns with
the electrochemical potential of the ohmic contacts.
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Figure 2: We illustrate the examples of 3D block measurement by varying the three gate voltages. The bias-
triangles in 3D can be seen in the middle plot where there is an isolation of the current with respect to Gate A
and Gate B. Our approach will be more efficient to decide where to measure next given such 3D object while a
human expert can encounter difficulty.

The measurements are performed in real time on a double quantum dot device to obtain the desired prop-
erty of the bias-triangles, an important feature characterising qubit. We measure the current flowing through
the device as a function of gate voltages. We can optionally use two or three gate voltages to control the
device. When a potential that defines a bias-triangles is formed, gates A and B shift the electrostatic potential
inside quantum dots where gate A handles the right dot and gate B handles the left dot. An example of the
bias-triangles behaviour using two gates is shown in Right Fig. 1 and using three gates in Middle Fig. 11.
Within the large and complicated surrounding area, this bias-triangles is difficult to control. In addition, this
bias-triangles, as well as the current features, is not static in the gate voltage space. Instead, it is shifting and
evolving over the course of the experiments on two-electron spin qubits presented in 29–33.

In Right Fig. 1, we depict four different quantum regions (aka regimes 28) of no-current, high-current,
single-dot and bias-triangles with distinctive statistical representations. Particularly, we use a univariate Gaus-
sian distribution to represent the density (or histogram) of electric current at each quantum state region. These
regions can be represented as follows. No-current is the region where we have zero intensity mean µ (or very
low current due to noise) and zero (or very low) standard deviation σ . High-current is the region with high
current and low standard deviation. Single-dot is the mixed region with and without current. The bias-triangles
constitute our target of interest as shown in Fig. 1.

Due to the property of the gate movement (see Fig. 1), we can not suddenly jump across different places
in the gate voltage space. Instead, the measurement process needs to be done step by step sequentially. In
addition, measuring the electric current throughout the gate voltage space is time consuming wherein fast and
large changes in gate voltage should be avoided. This measurement control problem turns out to be finding
target bias-triangles using the fewest number of measurements in the large gate voltage space. Alternatively,
our task can be seen as the advanced version of the famous Grid World task in DRL 18.

Building quantum environment for training deep reinforcement learning. In DRL, the agent will interact
with the environment to gain experiences. Therefore, we build an environment from the quantum dot device
for training our algorithm and name it as Quantum Environment (QE). Our designed QE follows the setting of
Open Gym AI 34 with functionalities and interfaces. This is ready to be used for benchmarking and training
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Figure 3: We represent a state of the electric measurement by 9 overlapping blocks represented by the blue
squares (5 in the left and 4 in the right). A block with the bias-triangles is in red. A special property of the
bias-triangles region is that only one or two blocks have the bias-triangles and the remainers are no-current.

existing DRL algorithms. In addition, this environment is useful for interested DRL researchers to develop
their methods for improving quantum technologies.

To construct this environment, we make multiple measurements of electric current maps as shown in
Fig. 1. We have considered a gate voltage space of 360mV ×360mV. For each electric current map, the
quantum physicists will annotate which location has bias-triangles property. These ground truth locations in
gate voltages space (or states) are marked in the environment. Then, we train the DRL algorithm starting at
different locations in the environments to reach this marked locations.

State. A state s is an electric current measurement given gate voltages. We note that we do not use the
gate voltage values, but the electric measurement. This is to mitigate the effect of switches in the measurement.
Instead of using a single image, we construct multiple overlapping blocks to represent each state. This design
is to ensure that our desired target of bias-triangles does not lie in the border between blocks and is not effected
by the noise from the device in which the electric current is evolving over time. Specifically, we define each
block size of 18× 18 mV1 to fully capture the target bias-triangles. In our environment, given different size
and position of the blocks, the state feature could be different.

Instead of making densely overlapping blocks by a moving kernel horizontally and vertically, we propose
to represent each state by 3 blocks per dimension for simplicity. In other words, the image is represented as 3d

number of the blocks where d is the dimension. The dimension d corresponds to the number of gates used. In
our setting, each state in two gates includes 9 blocks as the tensor of 9× 18× 18 dimensions and three gates
will have the tensor of 27×18×18. Examples of the state and blocks using two gates can be found in Fig. 3.

After defining the state as an electric current above, we propose to use the statistical feature summarising
the electric current magnitude µ and standard deviation σ . The second design of the state will bring two
major advantages. The first benefit is from our device property that the raw electric measurement can vary
significantly across the devices while such statistical estimation is more robust. The second benefit is for
scalability that we can extend to higher number of dimensions using the randomly sampling the block rather
than a full scan which scales exponentially with the dimensions. Under this representation, the state includes a
feature vector of 9×2 dimensions.

To prevent from shifting effect and from the situation where the bias-triangles can locate in the boundary,
we set 50% overlapping between neighboring states. Since the state can also be defined using more than two

1We empirically found this is the good parameter.
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gates, we illustrate the examples of the 3D states using three gates in Fig. 2 in which we depict the bias-triangles
in the Middle as the isolated feature.

Actions. Our action space includes increasing (+) or decreasing (−) each gate voltage. We have specially
designed two actions to modify both gates simultaneously as shown in Fig. 5. This is inspired from the physical
property in the our device. In higher dimensional setting, such as controlling d > 2 gates, this action space can
be generalized wherein the number of actions is 2×d +2.

Reward. We assign high reward to our target state of bias-triangles and vice versa. We encourage the
algorithm to find the bias-triangles using the fewest number of measurement by designing the reward score as
follows. We assign the highest reward r = 10 to the bias-triangles location. This reward score for the target
state is provided by the domain expert at a few selected places during training. Then, other states will take
r =−1. In addition, to prevent from repetition in measurement which is wasteful, any action which leads to the
location (i, j) revisited will take the penalised reward r = −10× ni, j where ni, j indicates the number of time
this location (i, j) has been visited. The maximum number of steps per episode during training is set as 100.
Beyond this threshold, if the algorithm can not find the bias-triangles, it will terminate and assign r = −10.
The maximum number of steps controls how far away from a starting point the device-measurement can go.

Results

We present a deep reinforcement learning algorithm for controlling the measurement process in the quantum
dot device. We aim to minimise the number of required measurement to find the bias-triangles, a desirable
feature to realise a spin qubit. In addition, our algorithm can efficiently operate without human intervention.

?

Figure 4: Algorithm summary. The image
is the electric current scanned given two
gate voltages in the device. The algorithm
aims to use the fewest number of measure-
ment to find the target bias-triangles.

We summarise an overview of the algorithm in Fig. 4. The
proposed framework consists of three steps: (1) starting measure-
ment at the quantum device at some gate voltages (either ran-
dom or pre-specified), (2) determining the next measurement and
changing the gate voltages accordingly, and (3) performing the
measurement. The steps (2) and (3) are repeated until we find the
desired bias-triangles. We aim to keep the number of measure-
ment as the fewest as possible.

Deep Reinforcement Learning. We consider a sequential de-
cision making setting, where an agent (e.g., computer algorithm)
interacts with a Quantum Environment over discrete time steps.
We refer the interested readers to 18, 35 for an elegant introduction
of reinforcement learning. In our measurement control problem,
the agent perceives an electric measurement as a state st at time
step t. The agent then chooses a next measurement by selecting
an action from a discrete set at from 6 possible actions (using two
gates) or from 8 possible actions (using three gates) and observes
a reward signal rt indicated how good or bad the decision at (given
the state st) is. We aim to learn an optimal policy π (a | s) which
fully defines the behavior of an agent over actions given states.
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Figure 5: Our deep reinforcement learning framework. The vector count C representing the 6 dimensional
adjacent matrix is included in one of the last layer to discourage from revisiting the previous locations.

In deep reinforcement learning, we construct a neural net-
work to approximate the input state s and produce the Q-values for every action in the action space 19, 36, 37. The
neural network is used to learn the parameters over multiple episodes (iterations) so that when the training is
done, we get this trained network to predict the next best action to take in the environment 18.

Duelling deep Q network. We consider a particular attractive form of model-free strategy 36 which
means that no explicit model of the state-transition dynamics is estimated during computation of the policy.
Among different version of DRL algorithms, we consider the duelling architecture 38 to train the algorithm. The
key insight behind duelling architecture is that for many states, it is unnecessary to estimate the value of each
action choice. For example, knowing whether to move left or right only matters when the target bias-triangles
is nearby. In some states, it is of significant importance to know which action to take, but in many other states
the choice of action has less impact on what happens – the case in our quantum device when the measurement
is at the empty current region (no-current) or full current region (high-current).

The module that combines the two streams of fully connected layers to output a Q estimate requires
thoughtful design 38. From the expressions for advantage Qπ (s,a) =V π(s)+Aπ(s,a) and state-value V π(s) =
Ea∼π(s) [Qπ (s,a)], it follows that Ea∼π(s)[A(s,a)] = 0. To address the issue of identifiability in the sense that
given Q we cannot recover V and A uniquely, we can force the advantage function estimator to have zero
advantage at the chosen action. That is, the duelling DQN 38 defines the Q function as Q(s,a) = V (s) +
A(s,a)−maxa′ A(s,a′)to increase the stability of the optimisation.

To discourage from reselecting the visited locations, we have defined the count statistics over the number
of previous visit (denoted as C) around neighboring locations and concatenate it into the last fully connected
layer as shown in Fig. 5. For this purpose, the dimension of C is equal to the number of actions.

Optimal decision given the input measurement. Given the estimated policy π , we make the next
measurement as the optimal decision given the electric current st of the block (step 3 in Fig. 4) is as at =
argmaxa′Qπ(a′,st). This estimation is the forward computation in the DRL framework. This decision can be
made either in the same quantum device used for training or in a different quantum device. For stable training,
we have made use of the prioritised experience replay technique 39.

Deciding when to stop measurement. We stop the measurement when the maximum number of mea-
surement is reached or when the target of bias-triangles is detected. This becomes a binary classification
problem described in the appendix.
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Figure 6: The training loss and number of measurements comparison on the two versions of our framework.
Our CNN version for image state is overfitted in the training device (Left) and performs worse in the test device
(Right) comparing to the case of statistical feature state.
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Figure 7: We evaluate the performance of our algorithm using statistical feature with different starting locations.
The performance is recorded on the same quantum device in which training is performed (Left) and a different
device (Right). This demonstrates that our algorithm is flexible and robust against device variability.

We present our network architectures in Fig. 5 and Fig. 13 in the appendix where we have two versions:
the convolutional neural network (CNN) version for state as image features or fully connected (FC) version for
state as statistical features.

Our primary focus in this measurement control problem is to find the bias-triangles in the gate voltage
space. For efficiency, we aim to use the fewest number of measurement, i.e. spend the minimum measurement
time, instead of measuring the electric current in the entire gate voltage space. Therefore, we use the number
of measurement as the main criteria for evaluation. Here, each measurement refers to scan a small block (or
a state) by varying the gate voltages. We first present the experimental results using two gates and then three
gates. Without explicitly stated, by defaults the experiments are considered using two gate voltages.

Experiment setting. We implement our system in Python with Tensorflow. The algorithm is trained on a
computer with GPU Titan V 32GB of RAM. The training process takes approximately 3− 4 hours for two
gates and 8− 9 hours for three gates. We summarise the deep learning architecture and hyperparameters in
Table 1 in the appendix where we have two separate DRL models using CNN 40 for state as image feature and

7



Same Device Different Device
0

50

100

150

200

250

Nu
m

be
r o

f M
ea

su
re

m
en

ts

12% 20%DRL

Rand

DRL

Rand

Traditional Scan

Same Device Different Device
0

20

40

60

80

100

M
ea

su
re

m
en

t T
im

e 
(M

in
ut

es
)

14%
23%

DRL

Rand

DRL

Rand

Traditional Scan

Figure 8: DRL significantly reduces the number of required measurements. Comparing to the traditional scan,
DRL takes only 20% of the measurements on the test device, which implies a reduction on measurement time
of 23%. Moreover, our DRL does not require a human intervention as opposed to the traditional scan.

fully connected layers for state as statistical features.

Training convergence. Each episode length is defined up to a maximum of 100 steps unless it is termin-
ated earlier after the bias-triangles is found. The algorithm is converged after training over 10,000 episodes
(iterations). We illustrate the convergence of our algorithm by showing the training loss reducing over time
in Left Fig. 6. In addition, we estimate the number of required measurement in the training device which is
converging to 20 steps in Middle Fig. 6.

Comparison of image features vs statistical features. Fig. 6 shows that our DRL model using CNN
version with state as image feature is overfitted to the training environment. Although it produces lower training
loss than the fully connected (FC) version, the performance of CNN version is not robust in the testing device.

Testing from different regions. We next consider the measurement efficiency from different starting
locations including no-current, high-current and single-dot regions defined previously. In Fig. 7, the results
are averaging using 20 different locations from the above regions. Due to the property of the single-dot region
which is located closer to the bias-triangles, the required number of steps is the fewest (black line). The
number of measurement for starting locations from no-current (blue) and high-current (red) are somewhat
similar, around 50.

Testing from different devices. To demonstrate the generality and flexibility of our approach, we con-
sider testing the performance of our trained DRL agent in a new quantum device in Right Fig. 7. Although
the performance slightly drops, the number of required measurements is still low comparing to the traditional
approach of grid scan, as shown in Fig. 8. Our DRL agent takes only 12% number of measurements compar-
ing to the traditional baseline (of whole scanning) when testing in the same device and 20% when testing in
the different quantum device. Comparing to a random policy where the action is randomly taken, we achieve
approximately 25% improvement on the same device and 33% improvement on the testing device. We further
highlight that the traditional grid scan requires a human expert to find where is the bias-triangles, while using
our approach does not require human intervention.

Visualising the measurement trajectories. We illustrate the measurement process by plotting the tra-
jectory starting from different locations in the gate voltage space. Although these three trajectories are different,
they finally find the bias-triangles without human intervention and without measuring the entire gate voltage
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Figure 9: Example of two measurement trajectories starting at different locations in the gate voltage space.
Based on the state feature, the algorithm will decide the next measurement until reaching the bias-triangles.
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Figure 10: We plot the optimal policies learned at early stage and later stage of the training process. The
arrows indicates, at the given location, the optimal direction to move. Two arrows represent two probable
actions which both with high chances of being optimal.
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Figure 11: The experiments on controlling the measurement through 3 gate voltages over 30,000 episodes
(iterations). Left: the convergence in the training loss. Right: the average number of measurement to reach the
bias-triangles target over 20 independent runs.

space. By choosing appropriate voltage values for the gate electrodes, the device could operate properly to
form the bias-triangles, as shown in Fig. 1.

Illustrating the optimal policy. In the reinforcement learning context, a policy defines what an agent
does to accomplish a task. We present the optimal policies at different training stages in Fig. 10 wherein
we use arrows to indicate the action, i.e., the direction to move in the gate voltage space to perform the next
measurement. The algorithm learns that it should move into bottom left (more positive gate voltages) if the
state is no-current or go into top right (more negative gate voltages) if the quantum state is high-current. In Fig.
10, we have placed the bias-triangles at the center of the plot for convenience in visualisation. In practice, this
location of interest is unknown.

Controlling more gate voltages. In the previous experiments, we have demonstrated the capacity of our
model on controlling two gates. We now further extend our model to handle three gate voltages as marked in
Left Fig. 1 where the additional Gate C is used. We note that training our algorithm on three gate voltages
requires more number of iterations (episodes) than on the two gate case. That is, our algorithm in three gates
takes 30,000 episodes for convergence comparing to 10,000 episodes in two gates, as shown in Fig. 11. At the
convergence, the average number of required measurement is 70 for reaching the bias-triangles location.

This experiment demonstrates the applicability of the proposed approach in controlling the measurement
using more number of gates. Due to the complex shape and feature in high dimensional setting, it poses
challenges for human expert to measure and decide the next measurement. On the other hand, the machine
learning can learn and generalise well in high dimension. This step highlights the potential toward automatic
control in higher number of gate voltages beyond the human’s ability.

Since the gate voltage space increases exponentially with the number of used gates, measuring in three
gates space is always harder and time consuming than in two gates. We present the measurement compar-
ison of different approaches in using two and three gate voltages in Fig. 12. The experimental results show
that our DRL approach can scale well in controlling more number of gates. That is, the number of required
measurements using our approach does not significantly go up while the Random policy and the traditional
baseline will seriously fail through. In other words, our DRL for 3 gates can be 40 times more efficient than the
traditional scan and 10 times than the Random policy. We note that each block measurement in 3D will take
approximately 12 minutes. Due to the expensiveness of measurement, this comparison on three gate voltages
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Figure 12: The relative comparison of measuring the device using 2 vs 3 gate voltages. The gate voltage space
increases exponentially with the number of used gates. We show that our DRL can scale well to higher number
of gates while the Random policy and traditional scan will significantly suffer the curse of dimensionality.

is done using our built Quantum Environment that reflects well our real device.

Discussion

We have presented novel techniques towards controlling the measurement of double quantum dot devices.
Given that building scalable quantum computing devices is now on the horizon, we hope that such methods will
present themselves as natural prerequisite for construction of real devices against the rely on human heuristics.
Looking further, we shall control multiple gate voltages and multiple dots will present new challenges as a result
of the higher dimensional space of gate voltages. This curse of dimensionality will seriously pose challenges
for the experimentalists and be in need of the automatic discovery and control by machine learning.

Concluding Remarks

We have developed a deep reinforcement learning approach for controlling the measurement of the double
quantum dot device. Our algorithm can identify the desired bias-triangles using the fewest number of meas-
urements. This is a significant step toward enabling fully automated procedure for characterising robust qubit
- a building block in quantum computer. Our algorithm is a key contribution to the development of scalable
quantum technologies substantially. Moreover, we have contributed the Quantum Environment to facilitate
interested researchers in quantum technologies.
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Table 1: Deep Reinforcement Learning Architecture

CNN Version
Learning Rate 2.5e−6
Conv Layers 1 32,8,4
Conv Layers 2 32,4,2
Conv Layers 3 32,4,2

FC Layers 64,32
FC Layers (Dueling) 64,1

Common Parameters
Discount Factor 0.5

Optimizer Adam
Number of Episodes for 2 gates 10,000
Number of Episodes for 3 gates 30,000

Mini batch-size 32
Decay rate in ε greedy 1e−4

Replay buffer 20000
PER-β (start, final, no steps) (1.0,0.6,1000)

Fully Connected Version for 2 gates
Learning Rate 2.5e−6

FC Layers 128,64,32
FC Layers (Dueling) 64,1

Fully Connected Version for 3 gates
Learning Rate 2.4e−6

FC Layers 128,64,32,32
FC Layers (Dueling) 64,1

Code Availability

All code required to replicate the results presented in this paper will be made publicly available on Github.

Supplementary Materials

In the appendix, we first summarise the network architecture and hyperparameters used in Table 1. We further
illustrate the model architecture in Fig. 13. We then summarise all steps for training our DRL agent in Al-
gorithm 1. Finally, we present the classification step used to decide when to stop the algorithm. We stop the
measurement when the bias-triangles is detected or when the maximum number of measurement is reached.
This becomes a binary classification problem of bias-triangles found or not. Since we have built two models
for image feature and statistical feature, we develop two classifiers to detect the bias-triangles as follows.

A convolutional neural network for classifying image feature. Given image feature of raw measurement,
we train a CNN to recognise images. In our quantum experiment, we have a limited set of bias-triangles
observations while we have a bunch of negative examples. Moreover, our bias-triangles may exist in a variety
of conditions, such as different locations, scales, brightness etc. We account for these cases by training our
network with additional synthetically modified data. That is, we make minor alternations to our existing bias-
triangles observations, each of which is a block of image. Minor changes include scalings, translations and
rotations. This essentially is the premise of data augmentation. Our augmentation parameters are as follows.
We scale the image inward 0.9 and outward 1.1 of the original images. We translate the image in four directions
within 20% of size. We rotate the images of 90◦,180◦ and 270◦.

After obtaining the training data by image augmentation, we build a CNN model with the parameters and
architecture presented in Table 1.

A Kullback–Leibler divergence for classifying statistical feature. We can use the statistical features to
represent each state. That is, we estimate the univariate Gaussian distribution using the electric current value.
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Figure 13: Our deep reinforcement learning framework using state as statistical feature of 2D image from 2
gates (Top) and 3D blocks from 3 gates (Bottom). The vector count C representing the 6 dimensional adjacent
matrix is included in one of the last layer to discourage from revisiting the previous locations.

Algorithm 1 Training duelling deep Q network with prioritised experience replay.
Input: Replay buffer B, neural network model weight θ , minibatch size k, ∆ = 0,p1 = 1

1: for episode m≤M do
2: Observe s0 and make the action a0 = πθ (s0)
3: for step t = 1 to T do
4: Observe st ,rt and store transition (st−1,at−1,st ,rt) in buffer B
5: for j ≤ k # prioritised experience replay do
6: Sample transition j ∼ Pj = p j/∑i pi

7: Compute importance-sampling weight w j = (N×Pj)
−β/maxi wi

8: Compute TD-error δ j = r j + γ j maxa′Q(s j+1,a′)−Q(s j,a j) and update p j← |δ j|
9: Accumulate weight-change ∆← ∆+w j×δ j×∇θ Q(S j−1,A j−1)

10: end for
11: Update the network parameter using gradient descent: θ ← θ +α∆, reset ∆ = 0
12: end for
13: end for
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Figure 14: Distribution of current intensity at different regions in our gate voltage space.

For robustness in the estimation, we have normalised the current value between 0 to 1. Bias-triangles appears
at 1− 2 blocks and in all remaining blocks there is no-current as shown in Fig. 3. We first estimate the true
distribution for each state in Fig. 14. From these true distributions, each state has a distinctive representation
that will be useful for classification.

We can assign each block into a corresponding state by using a Kullback–Leibler divergence of two
univariate Gaussian distribution (one is estimated from the empirical distribution given the block and one is
from the true distribution). Then, we define if the state is bias-triangles if it contains blocks assigned into
bias-triangles and the remaining ones are assigned into no-current.

We have the closed-form formula for the KL divergence between two univariate Gaussian distribution
p∼N (µa,σa) and q∼N (µb,σb) is as below

KL(p||q) = log
σb

σb
+

σ2
a +(µa−µb)

2

2σ2
b

− 1
2
.

Finally, classifying a block using the statistical representation p ∼N (µ,σ) to one of the four states is
as argmini∈{1,2,3,4}KL(p||qi) where qi is the golden distribution shown in Fig. 14.

Classifying the state in 3D. Since the 3D block can be considered as multiple scan of the 2D grids. Therefore,
the 3D block is assigned as the target bias-triangles is when its 2D slice image is estimated as bias-triangles.
That is, we shall use the statistical feature approach described above to predict in 2D feature, then we take the
output of multiple 2D feature for identifying 3D.
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