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ML algorithm’s performances depend on hyper-parameters.
Finding the best hyperparameters for the highest performance

Hyperparameters Optimization
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Grid Search:
Create a list of values for each parameter.
Consider all possible combinations of 
these values.
Exhaustively evaluate the model and 
choose the best parameter.

Random Search:
Randomly select a parameter to evaluate.
Select the best parameter.

Traditional Hyper-parameter Tuning
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Grid vs Random vs Bayesian Optimization

Grid Search Random Search Bayesian Optimization

Missed
optimum location

Missed
optimum location

Found
optimum location
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Alloy composition: 
Strength: 
Goal: find the best composition for the highest strength .

Another Example: Alloy Development

5



Trial-error approach is typically used for alloy development using 
expert knowledge

Trial-Error Approach
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1 alloy testing = 1 day and 
100 experiments = 3 months and 
Even with experiments, trial-error still can not get the optimum solution

The Problem is Expensive Cost and Time

Cost

Quality
better quality
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Goal: introduce the Bayesian Optimization - techniques, 
applications and future research directions.

Broad summary of recent advances in
Batch Bayesian Optimization
High dimensional Bayes Opt
Mixed Categorical-Continuous Bayes Opt

A released package MiniBO.
30 papers are surveyed and organized in this talk, but they are by no 
means to complete.

Tutorial website: vu-nguyen.org/BOTutorial_ACML20.html

2 hours Tutorial on Bayesian Optimization
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Hyperparameter Tuning and Experimental Design as Black-Boxes

Part I: Bayesian Optimization [1 hour]

Part II: Recent Advances in Bayesian Optimization [1 hour]
Batch Bayesian Optimization
High dimensional Bayes Opt
Mixed Categorical-Continuous Bayes Opt

Future Research Directions in Bayesian Optimization

Agenda
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Vu Nguyen

Part I: Bayesian Optimization
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Vu Nguyen

Agenda

Hyperparameter Tuning and Experimental Design as Black-Boxes
Part I: Bayesian Optimization
Part II: Recent Advances in Bayesian Optimization

Batch Bayesian Optimization
High dimensional Bayes Opt
Mixed Categorical-Continuous Bayes Opt

Research Directions in Bayesian Optimization
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Bayesian Optimization

Gaussian Processes

Acquisition Functions

Applications

Demo Mini BayesOpt

Outline Part 1: Bayesian Optimization
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The relationship from to is through the black-box.

Black-box Optimization

Input Output Black-box
𝑓(𝑥)

Input

Output

𝑥ଵ

𝑓(𝑥ଵ)

𝑥ଶ

𝑓(𝑥ଶ)

𝑥ଷ

𝑦ଵ

𝑦ଶ

𝑓(𝑥ଷ)

𝑦ଷ

𝑥௠௔௫

looking for this maximizer
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Properties of Black-box Function

𝑥 𝑦 = 𝑓(𝑥)

Function form is not known 

No derivative form

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations 

input output
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The goal is to optimize the black-box function

Bayes opt makes a series of evaluations such 
that the maximum of is found in the fewest iterations.

Bayesian Optimization

𝑥 𝑦 = 𝑓(𝑥)

input output
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Bayesian Optimization Overview

Bayes Opt

input 

output Refine 

Acquisition function
exploit explore

Surrogate function

predictive mean predictive variance

Make a series of evaluations 
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Motivation

Given the observations from black-box function.
Our goal is to find the global maximizer.
Where should we evaluate next?
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Each line represents our belief about the underlying function 
given three observations.

Motivation
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We define a surrogate model to learn and update such belief.

A surrogate model mimics the behaviour of the true function f
as closely as possible.

A surrogate model should be cheap to evaluate.

Bayesian Optimization uses Surrogate Models

true function 
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1. Choose a surrogate model (prior) over the possible spaces of f.

2. Combine the prior and the likelihood (from the new evaluation) 
to get the posterior for the surrogate.

3. Use the posterior to build the acquisition function to select the 
next evaluation.

4. Augment the data and repeat steps 2 and 3.

Bayesian Optimization
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Why Bayesian?

surrogate modelnew data
update surrogate model 
given new data
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Why Bayesian?
Update surrogate model 
given new data

new data

surrogate model
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Given 3 initial observations

Illustration of Bayesian Optimization (3 points)

Aluminum (%)

the unknown
maximizer

௠௔௫=0.78

௠௔௫ =6

blackbox function
(unknown)
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Given 3 initial observations

Illustration of Bayesian Optimization (3 points)

where to evaluate next?

?

? ?

?
?

S
tr

e
n

gt
h

24



Illustration of Bayesian Optimization (4 points)
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Aluminum (%)

Suggested Experiment

Bayesian 
Optimization

input 𝑥

output 𝑦
Refine 

Black-box
𝑓(𝑥)
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Illustration of Bayesian Optimization (5 points)
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Suggested Experiment
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Illustration of Bayesian Optimization (6 points)
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Suggested Experiment
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Illustration of Bayesian Optimization (7 points)
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Suggested Experiment
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Illustration of Bayesian Optimization (8 points)

more samples
promising locations

less samples
poor locations

Bayes Opt finds the global optimum,
using fewest evaluations.

Hits the optimum
௠௔௫

௠௔௫
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Requirement 1: mimic the behaviour of the true function f.
We can use non-linear regression models.

Requirement 2: uncertainty for exploration
We can use any non-linear models which can provide the 
uncertainty.

Surrogate Models Requirements
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Gaussian Process

Random Forest (F. Hutter et al 2011)

Support Vector Regression

Student-t Process (A. Shah et al NIPS 2013 Workshop)

Deep Neural Network (J. Snoek et al ICML 2015)

Bayesian Neural Network (JT. Springenberg at al NIPS 2016)

Surrogate Models for Bayesian Optimization
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Bayesian Optimization

Gaussian Processes

Acquisition Functions

Applications

Demo Mini BayesOpt

Outline Part 1: Bayesian Optimization
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Gaussian process (GP) is a distribution on functions.
GP is characterized by the mean function 

and a positive definite covariance function K
Similar input (high covariance) should have similar output.
We can compute predictive mean and variance in closed-form. 

Gaussian Process

Rasmussen, C. E. Gaussian processes for machine learning, 2006. 33



Fitting 2D using Gaussian Process

Examples of Gaussian Process
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The Benefits of using Gaussian Process

Uncertainty
Closed-form
Limited data
Non-linear

uncertainty

belief about function value
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Gaussian Process

The joint distribution follows a Multivariate Gaussian

The covariance matrices are

36

Training points

Testing points



Gaussian Process

The joint distribution

The predictive probability

predictive mean

linear 
algebra

predictive variance
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Examples of GP Covariance functions

Two commonly used covariance functions in Bayes Opt
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This turns out to be crucial to good performance.

Covariance function selection (using prior knowledge)
SE kernel, Matern kernel, periodic kernel…etc

Gaussian process hyper-parameters.
E.g., length scale parameter of SE kernel.

Hyper-parameter Treatments in GP
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Minimize negative log marginal likelihood 

where denotes for the hyper-parameters and noise level; 
.

Optimize      using gradient descent.

Treatment for GP Hyper-parameters
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Bayesian Optimization
Gaussian Processes
Acquisition Functions

Upper Confidence Bound (UCB) and Expected Improvement (EI)
Thompson Sampling (TS) 
Optimization toolbox for acquisition function.

Applications
Demo Mini BayesOpt

Outline Part 1: Bayesian Optimization
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Get initial data

Repeat
1. Fit a GP model to the data 

2. Define the acquisition function from the GP model

3. Select the next query 

4. Evaluate the black-box to get the score

Bayesian Optimization Algorithm

Input ௧ାଵ Output ௧ାଵ ௧ାଵBlack-box
𝑓(𝑥)
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Based on a GP surrogate above, BO defines an acquisition function 
to select a point for evaluation.

Optimizing the acquisition function is cheaper without using 
black-box evaluation.

Acquisition Function is Built from a GP

instead of ௧ ௫∈௑ ௧ ௫∈௑

solvable!unsolvable!
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Acquisition function balances the 
explore-exploit.

Explore: seek places with high 
uncertainty.

Exploit: seek places in the 
locality of where you are 
already doing well at.

Acquisition Function
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Expected Improvement [Mokus, 1972]

Probability of Improvement [Krushner, 1997]

GP Upper Confidence Bound [Srinivas, 2010]

Predictive Entropy Search [Hernández-Lobato, 2014]
….

Balancing the exploration-exploitation in different ways.

Common Acquisition Functions
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Bayesian Optimization
Gaussian Processes
Acquisition Functions

Upper Confidence Bound (UCB) and Expected Improvement (EI)
Thompson Sampling (TS) 
Optimization toolbox for acquisition function.

Applications
Demo Mini BayesOpt

Outline Part 1: Bayesian Optimization
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Upper Confidence Bound (UCB) is one of the most used 
acquisition function.

(x)= (x)+ (x)
GP-UCB simply a combination of mean and variance functions . 
It encourages high mean and high variance 

Upper Confidence Bound (UCB)
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Define the improvement function over the incumbent 

where is the best value so far.

The expected improvement is defined as .

We get the closed-form solution for the EI as

where ೟
೘ೌೣ

೟
, is the normal p.d.f. and is 

the normal c.d.f.

Expected Improvement (EI)
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We get the closed-form solution as

where ೟

೟
, is the normal p.d.f. and is the normal c.d.f.

High mean and high variance => High value for EI.

Expected Improvement
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Both EI and UCB encourages high mean and high variance. They 
may and may not give the same suggestion.

(x)= (x)+ (x)

Remark on Expected Improvement vs UCB
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EI and UCB agree with each other
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EI and UCB can disagree with each other
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Different of Acquisition Functions (3 points)

Srinivas et al 2010

Jones et al 1998

Hernandez-Lobato
et al 2017

Hennig et al 2012

Hernandez-Lobato
et al 2014
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Different of Acquisition Functions (4 observations)
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Different of Acquisition Functions (5 points)
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Different of Acquisition Functions (7 points)
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Different of Acquisition Functions (10 points)
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Bayesian Optimization
Gaussian Processes
Acquisition Functions

Upper Confidence Bound (UCB) and Expected Improvement (EI)
Thompson Sampling (TS)
Optimization toolbox for acquisition function.

Applications
Demo Mini BayesOpt

Outline Part 1: Bayesian Optimization
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For GPs, is an infinite-dimensional object so sampling it is 
not simple.

Thompson Sampling for GP
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Bayesian Linear Regression using feature     and GP with 
kernel are equivalent. 

Let , the linear model 
is an approximate sample from where

Borrowing the idea of Thompson Sampling for Bayesian Linear 
Regression, then do similarly for Gaussian Process.

Connection of Gaussian Process to Linear Model
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Bayesian Linear Regression

Transform space 

Connection of GP to Bayesian Linear Model

Linear function

Prior distribution

Likelihood

Posterior
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Posterior of Bayesian Linear Regression

Posterior where
Bishop book page 153

Predictive distribution

Woodbury matrix-inversion

Bishop book page 156
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Bayesian Linear Regression

Posterior Predictive distribution for GP

Equivalence between GP vs BLR

Equivalent !
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Randomly draw w from the posterior

Find the optimum using 

Thompson Sampling for BLR
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Transform the data space               to feature space

Using Bochner theorem, we approximate 

where                     ,                        , and is the length-scale of the 
SE kernel.

Approximate kernel by Random Fourier feature

Rahimi, A. and Recht, B., Random features for large-scale kernel machines. NeurIPS, 2008.
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and

,

Thompson Sampling from a Gaussian process
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Thompson Sampling to Sample the Optimum Locations

Thompson Sampling draws samples from GP.
Each yellow stars is the maximizer of the sampled function 
We consider as the perceived optimal samples
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Repeat
1. Fit a GP model to the data 
2. Define the acquisition function from the GP model
3. Select the next query 
4. Evaluate the black-box to get the score 

Bayesian Optimization Algorithm

After defining , the optimization is done using popular toolboxes.
Optimizing is easier and cheaper than .
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Vu Nguyen

Outline Part 1: Bayesian Optimization

Bayesian Optimization
Gaussian Processes
Acquisition Functions

Upper Confidence Bound (UCB) and Expected Improvement (EI)
Thompson Sampling (TS)
Optimization toolbox for acquisition function.

Applications
Demo Mini BayesOpt
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Applications

Robot control design

Alloy design

Heat-treatment design

Machine learning hyper-parameter tuning.

….
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Applications – Robot Design

Tuning 8 parameters (x) to maximize the 
speed (y) of bipedal robot.

Physical configurations
ଵ ଶ ଼

Walking speed

Vu Nguyen et al, ACML 2017.
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After tuning with Bayesian 
optimization

Applications – Robot Design

Before tuning
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Bayesian Optimization for Tuning Deep Learning

Photo from hackernoon.com

Deep learning offers breakthrough in image recognition, speed 
recognition and self-driving cars.

The DL performance critically depends on the hyperparameters.

Hyperparameters include 
1. #layers, 
2. #node per layer, 
3. mini-batch size, 
4. learning rate…
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Bayesian Optimization for Tuning Deep Learning

Bayes Opt is better than human expert tuning for deep learning.

Snoek, J. et al. Practical Bayesian optimization of machine learning algorithms. NIPS 2012.

DL hyperparameter
ଵ ஽

Accuracy
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Win-rate from
50% to 66%

BO for Tuning Deep Reinforcement Learning
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Short Summary

Bayesian optimization is essential for hyper-parameters tuning of 
the black-box functions (e.g., machine learning algorithm and 
experimental design).

Bayesian optimization has both theoretical guarantee and empirical 
success that it performs better than random search and grid search 
(especially for high dimensions).

Bayesian optimization is an active research direction.

76



Library for Bayesian Optimization
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Package: vu-nguyen.org/BOTutorial_ACML20
Github repository: MiniBayesOpt

MiniBayesOpt

https://github.com/ntienvu/minibo 78



MiniBayesOpt

https://github.com/ntienvu/minibo 79



Illustration on 1d optimization

Illustration on 2d optimization

Demo in 1D and 2D

https://github.com/ntienvu/minibo 80



Customize your own black-box function

Demo using your own function

ranges of each variables
ଵ [−5,10]
ଶ [0,15]

if maximize, set it = 1
if minimize, set it = -1

given the input 
return the output 
( defined by yourself )

https://github.com/ntienvu/minibo 81



Run for multiple iterations

How to use Bayesian Optimization
Compare with Random search

https://github.com/ntienvu/minibo 82



Question and Answer
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