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Hyperparameters Optimization

@ ML algorithm’s performances depend on hyper-parameters.

@ Finding the best hyperparameters for the highest performance
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Traditional Hyper-parameter Tuning

@ Grid Search:

o Create a list of values for each parameter.

@ Consider all possible combinations of
these values.

@ Exhaustively evaluate the model and
choose the best parameter.

@ Random Search:

e Randomly select a parameter to evaluate.
e Select the best parameter.




Grid vs Random vs Bayesian Optimization

Missed Missed Found
optimum location optimum location optimum location
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Random Search Bayesian Optimization




Another Example: Alloy Development

@ Alloy composition: X = [% AL % Co, %Fe, %Cu, %C ... ]

@ Strength:y

@ Goal: find the best composition X for the highest strength y.
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Trial-Error Approach

@ Trial-error approach is typically used for alloy development using
expert knowledge




The Problem is Expensive Cost and Time

o 1 alloy testing =1 day and $100
o 100 experiments = 3 months and $10,000
o Even with 100 experiments, trial-error still can not get the optimum solution

Cost

Trial & Error

reduced cost
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2 hours Tutorial on Bayesian Optimization

@ Goal: introduce the Bayesian Optimization - techniques,
applications and future research directions.

@ Broad summary of recent advances in
e Batch Bayesian Optimization
e High dimensional Bayes Opt
o Mixed Categorical-Continuous Bayes Opt

@ A released package MiniBO.

e 30 papers are surveyed and organized in this talk, but they are by no
means to complete.

@ Tutorial website: vu-nguyen.org/BOTutorial ACML20.html




e Hyperparameter Tuning and Experimental Design as Black-Boxes
@ Part |: Bayesian Optimization [1 hour]

@ Part II: Recent Advances in Bayesian Optimization [1 hour]
@ Batch Bayesian Optimization
@ High dimensional Bayes Opt
e Mixed Categorical-Continuous Bayes Opt

@ Future Research Directions in Bayesian Optimization



Part |: Bayesian Optimization




o|Part |: Bayesian Optimization

@ Part II: Recent Advances in Bayesian Optimization
@ Batch Bayesian Optimization
e High dimensional Bayes Opt
e Mixed Categorical-Continuous Bayes Opt

@ Research Directions in Bayesian Optimization
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Outline Part 1: Bayesian Optimization

@ Bayesian Optimization

@ Gaussian Processes

@ Acquisition Functions

@ Applications

@ Demo Mini BayesOpt
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Black-box Optimization

The relationship from x to y is through the black-box.

Input x TR Outputy = f(x)
fx) '

looking for this maximizer

Y3

Output ¥

f(x)

Y2

X1 X2 X3 Xmax
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Properties of Black-box Function

ffXERTSYER

X

y =f(x)
input f(x) output

Function form is not known vV=—ax+Db

No derivative form j—xf><

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations y = f(x)
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Bayesian Optimization

o The goal is to optimize the black-box function z* = argmax f (x).
rcX

X

y=f()

output

f(x)

input

@ Bayes opt makes a series of evaluations X4, X5, ..., X7 such
that the maximum of f is found in the fewest iterations.
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Bayesian Optimization Overview

Refine

Bayes Opt

output y

¢—
—

input x

e Make a series of evaluations xq, X5, ... X7

exploit explore

Acquisition function ¢ (x) = u(x) + k X o(x)
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@ Given the observations from black-box function.
@ Our goal is to find the global maximizer.
@ Where should we evaluate next?
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@ Each line represents our belief about the underlying function
given three observations.
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Bayesian Optimization uses Surrogate Models

o We

define a surrogate model to learn and update such belief.

@ A surrogate model mimics the behaviour of the true function f

as closely as possible.

@ A surrogate model should be cheap to evaluate.

f(x)

true function f

surrogate function
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Bayesian Optimization

1. Choose a surrogate model (prior) over the possible spaces of .

2. Combine the prior and the likelihood (from the new evaluation)
to get the posterior for the surrogate.

3. Use the posterior to build the acquisition function to select the
next evaluation.

4.  Augment the data and repeat steps 2 and 3.
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Why Bayesian?

update surrogate model

. surrogate model
given new data new data & ode
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Why Bayesian?

Update surrogate model
given new data

~,

new data

/

Evidence

Posterior Beliefs

Prior Beliefs

/

surrogate model
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llustration of Bayesian Optimization (3 points)

@ Given 3 initial observations
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llustration of Bayesian Optimization (3 points)

@ Given 3 initial observations

20 - where to evaluate next?
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llustration of Bayesian Optimization (4 points)
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llustration of Bayesian Optimization (5 points)
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llustration of Bayesian Optimization (6 points)
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llustration of Bayesian Optimization (7 points)
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llustration of Bayesian Optimization (8 points)

Hits the optimum

less samples
poor locations

/

Xmax = 0.78
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Bayes Opt finds the global optimum,
using fewest evaluations.
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Surrogate Models Requirements

@ Requirement 1: mimic the behaviour of the true function /.

@ We can use non-linear regression models.

@ Requirement 2: uncertainty for exploration

@ We can use any non-linear models which can provide the
uncertainty.
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Surrogate Models for Bayesian Optimization

@ Gaussian Process

@ Random Forest (F. Hutter et al 2011)

@ Support Vector Regression

o Student-t Process (A. Shah et al NIPS 2013 Workshop)

@ Deep Neural Network (J. Snoek et al ICML 2015)

@ Bayesian Neural Network (JT. Springenberg at al NIPS 2016)
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Outline Part 1: Bayesian Optimization

@ Bayesian Optimization

@/Gaussian Processes

@ Acquisition Functions

@ Applications

@ Demo Mini BayesOpt
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Gaussian Process

@ Gaussian process (GP) is a distribution on functions.

@ GP is characterized by the mean functionm: X —» R

and a positive definite covariance function K: X X X —- R

e Similar input (high covariance) should have similar output.

@ We can compute predictive mean and variance in closed-form.

3 |
—--- GP mean ¢ Obs GP variance

Rasmussen, C. E. Gaussian processes for machine learning, 2006. 33



Examples of Gaussian Process

@ Fitting 2D using Gaussian Process
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The Benefits of using Gaussian Process

- — —17-T
o Uncertainty p(ys | y) ~N (KK 'y, Ko — KKK, )
o Closed-form () o(z) uncertainty
@ Limited data belief about function value
3 |
@ Non-linear ---- GPmean 4 Obs GP variance
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Gaussian Process

@ The joint distribution follows a Multivariate Gaussian

[ i i T
K K

| Y ~N{o *

L y* K* K**

Training points

Testing points

@ The covariance matrices are

K.=[ k(ze,21) - k(zs,2n) ] Ko = k (x4, x4)
| f;(fﬂl,-’fﬂ 7;(:E1,33‘N) i :
A = ez - (z2,21) klaaz) :O'?' exp [A(Iﬂzm) ]
| k(zn,z1) -+ k(zn,TN) |
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Gaussian Process

e The joint distribution [ ” ] NN(O [ K KT D
Y

K* K**
linear
__ . algebra
@ The predictive probability
Testing points Training points
3 . ~ —1 _ —1 T
-=-- GP mean 4 Obs GP variance p (y* | y) N(K*Il( y’f{** K’TK K ’)
lo (a) o(a)
= e ) predictive mean  predictive variance
> 0 “ ______________
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Examples of GP Covariance functions

@ Two commonly used covariance functions in Bayes Opt

Squared-Exponential | Matérn
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Hyper-parameter Treatments in GP

@ This turns out to be crucial to good performance.

@ Covariance function selection (using prior knowledge)

o SE kernel, Matern kernel, periodic kernel...etc

@ Gaussian process hyper-parameters.
o E.g., length scale parameter of SE kernel.

39



Treatment for GP Hyper-parameters

@ Minimize negative log marginal likelihood

1 L N
L= —logp(yl@) = §log det C(0) + §yTC_1(9)y + ilog(Q'zr)

where 8 denotes for the hyper-parameters and noise level; C =
K+ ol

@ Optimize £ using gradient descent.
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Outline Part 1: Bayesian Optimization

@ Bayesian Optimization
@ Gaussian Processes

o|Acquisition Functions

e Upper Confidence Bound (UCB) and Expected Improvement (El)
@ Thompson Sampling (TS)
@ Optimization toolbox for acquisition function.

@ Applications
@ Demo Mini BayesOpt
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Bayesian Optimization Algorithm

Get initial data

y=Ff(x)
*
4

Repeat

1. Fit a GP model to the data (x;,v;)i_4

2. Define the acquisition function a(x) from the GP model

3. Select the next query x;,; = arg max a(x)

4. Evaluate the black-box to get the score

Input x4 Slack-box Output yr41 = f(X¢41)
f(x) ‘
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Acquisition Function «a is Built from a GP

@ Based on a GP surrogate above, BO defines an acquisition function
a(x) to select a point for evaluation.

instead of Xy = argmaxxe@ ‘ Xt = argmaxxe
unsolvable! solvable!

e Optimizing the acquisition function « is cheaper without using
black-box evaluation.

43



Acquisition Function

Acquisition function balances the
explore-exploit.

@ Explore: seek places with high
uncertainty.

@ Exploit: seek places in the
locality of where you are
already doing well at.
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Common Acquisition Functions

@ Expected Improvement [Mokus, 1972]

@ Probability of Improvement [Krushner, 1997]

@ GP Upper Confidence Bound [Srinivas, 2010]

@ Predictive Entropy Search [Hernandez-Lobato, 2014]

Balancing the exploration-exploitation in different ways.
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Outline Part 1: Bayesian Optimization

@ Bayesian Optimization

@ Gaussian Processes

@ Acquisition Functions

Upper Confidence Bound (UCB) and Expected Improvement (El)

@ Thompson Sampling (TS)

@ Optimization toolbox for acquisition function.

@ Applications

@ Demo Mini BayesOpt
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Upper Confidence Bound (UCB)

@ Upper Confidence Bound (UCB) is one of the most used
acquisition function.

PV (x)=p(x)+y/ B X o(x)

GP-UCB simply a combination of mean and variance functions .
It encourages high mean u( ) and high variance a( )
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Expected Improvement (El)

o Define the improvement function over the incumbent y™%*

I(x) = max{0, f (x) — y™ax}

max is the best value so far.

where y
o The expected improvement is defined as E[I1(x)].

o We get the closed-form solution for the El as
a® (x) = E[I(x)] = 0,(x)(2) + [ue(x) — y™¥*]P(x)

he@)—y 77 () is the normal p.d.f. and ®() is

gt (x)

where z = z(x) =

the normal c.d.f.
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Expected Improvement

o We get the closed-form solution as

atl(x) = E[I(x)] = 6. (x)p(2) + [ (x) — E]D(x)

where z = “’;(3255 ¢ is the normal p.d.f. and ® is the normal c.d.f.
t

10 A

0 &=

2
Y= _10

—20 1

0.24
T

0.0 -

@ High mean and high variance => High value for El.
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Remark on Expected Improvement vs UCB

@ Both El and UCB encourages high mean and high variance. They
may and may not give the same suggestion.

a®' (x) = E[1(x)] = 0,(x)p(2) + [pe(x) — €] D(x)

a®FTYE (x)=p(x)+/ B X o(x)
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El and UCB agree with each other

UCB

El
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El and UCB can disagree with each other

o(x)

—_— f(X) e Data X -—== U(X)

f(x)

%

>
|
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Different of Acquisition Functions (3 points)

Srinivas et al 2010
Jones et al 1998

Hernandez-Lobato
et al 2017

Hennig et al 2012

Hernandez-Lobato
et al 2014
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Different of Acquisition Functions (4 observations)

Bayesian Optimization with Different Acquisition Functions

UCB

w 1.0 A

PES




Different of Acquisition Functions (5 points)

Bayesian Optimization with Different Acquisition Functions
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Different of Acquisition Functions (7 points)

Bayesian Optimization with Different Acquisition Functions
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Different of Acquisition Functions (10 points)
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Outline Part 1: Bayesian Optimization

@ Bayesian Optimization
@ Gaussian Processes

@ Acquisition Functions
@ Upper Confidence Bound (UCB) and Expected Improvement (El)

o| Thompson Sampling (TS)

@ Optimization toolbox for acquisition function.
@ Applications
@ Demo Mini BayesOpt
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Thompson Sampling for GP

@ For GPs, f is an infinite-dimensional object so sampling it is
not simple.

Gaussian Process and Thompson Sampling

_10 -

—— Thompson sample g(x) €& Obs \
* g* = maxg(x) ---- GP mean \\"'
—157 mmsm Orig Func 95% ClI *
0.0 Dj2 014 D.IG 018 1.0

59



Connection of Gaussian Process to Linear Model

e Bayesian Linear Regression using feature ¢ and GP with
kernel k are equivalent.

o Let k(x,x") = ¢p(x)T Pp(x), the linear model g(z) = ¢(x)" w

is an approximate sample from p(f|D) where

w~ N ([0T0 + o217 0Ty, o2 [@T D + o21] 1)

@ Borrowing the idea of Thompson Sampling for Bayesian Linear
Regression, then do similarly for Gaussian Process.
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Connection of GP to Bayesian Linear Model

@ Bayesian Linear Regression

@ Transform space x — ¢ (x)

Linear function f (z) = ¢(z)!w
Prior distribution w ~ N (0,I)
Likelihood yi ~ N (f (z;) 7(72)
Posterior p(w) ~ N (m,V)
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Posterior of Bayesian Linear Regression

1
— 3
Posterior p(w) ~ N(m,V) where "7 52 Yy
Bishop book page 153 V =o" ((I)T(I) + 021)_1
Predictive distribution plx|...) ~N (un(z),on(z))

Bishop book page 156

fin (@) = (@) m = ¢(2)® (37D + 0°1)  y

0n (@) = 3(x)TV(x) + 0% = d(a)To? (8T + 0°1)

¢(x) 4 o

Woodbury matrix-inversion

o (@) = (@) o(x) — $(x) 0T (8T + 0’T)  B() + o



Equivalence between GP vs BLR

1
o Bayesian Linear Regression  #n (®) = ¢(z)" @ (27@ +0°T) "y

K, K-

o (2) = o) 6(x) — o(a) 2T (TR +0°T) " Bo(a)

K., K, K1 KI

Equivalent !

@ Posterior Predictive distribution for GP

p(y« |y) ~N (K. K 'y, Ko — K.K'K])

J

| |

p(x) o(x)
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Thompson Sampling for BLR

o Randomly draw w from the posterior w | X ~ N (un, 3n)

@ Find the optimum using w Ty = argmaxaﬁTw

rxeX
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Approximate kernel by Random Fourier feature

e Transform the data space = € R* to feature space ¢(z) € RM

e Using Bochner theorem, we approximate

k(xz,2") = E |cos(w’ x + b], sin(w’ z + )]

where 5~ U[0,27], w~ N(0,02I), and o/ is the length-scale of the
SE kernel.

Rahimi, A. and Recht, B., Random features for large-scale kernel machines. NeurlPS, 2008. .



Thompson Sampling from a Gaussian process

@ W N./\/‘(O,O'?Idxd),Vm <M and W =|wi,...,wm] € RMxd

200 :
° ¢(x) =/ 7= {cos (Wa+b).sin(Wa+b)}, &= [¢(x:)]¥,,Va; € Dy
o g(z) = ()" [® D + 0?17 DTy
Gaussian Process and Thompson Sampling
X
Yy— =g
el || e Thompson sample g(x) ¢ Obs
ik g*=maxg(x) ---- GP mean
-151 === Qrig Func 95% Cl

0.0 0.2
X



Thompson Sampling to Sample the Optimum Locations

@ Thompson Sampling draws samples g() from GP.
@ Each yellow stars x™ is the maximizer of the sampled function g()

e We consider x™ as the perceived optimal samples

Gaussian Process and Thompson Sampling

Gaussian Process

-

X \
= -5
-10 ‘\ ~10-
. —— Thompson sample g(x) € Obs
mms= QOrig Func  ---- GP mean \\" * g" =maxg(x) ---- GP mean
-151 4 Obs 95% ClI ¢/ -151 ms= Qrig Func 959% ClI
0.0 0:2 0].4 Ojﬁ 0j8 1.0 0.0 0j2 014 016 OjB 1.0

X
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Bayesian Optimization Algorithm

Repeat

1. Fit a GP model to the data (x;, v;)i_,

2. Define the acquisition function a(x) from the GP model
3. | Select the next query x;,; = arg max a(x)
4. Evaluate the black-box to get the score y;11 = f(X¢41)

After defining a(), the optimization is done using popular toolboxes.
Optimizing a() is easier and cheaper than f().

N f
\\LOPT“ | P @SciPy 68




Outline Part 1: Bayesian Optimization

@ Bayesian Optimization

@ Gaussian Processes

@ Acquisition Functions
@ Upper Confidence Bound (UCB) and Expected Improvement (El)
@ Thompson Sampling (TS)

@ Optimization toolbox for acquisition function.

o|Applications

@ Demo Mini BayesOpt
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Applications

@ Robot control design
e Alloy design
@ Heat-treatment design

@ Machine learning hyper-parameter tuning.
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Applications — Robot Design

Tuning 8 parameters (x) to maximize the
speed (y) of bipedal robot.

x =[x, Xy, ..., Xg] y = f(x)
|

Vu Nguyen et al, ACML 2017.
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Applications — Robot Design

@ Before tuning

BreésKkpomns Hun Hun i
\4yFind ~ Indent [:| 7| s - v  Adva

_ NAVIGATE | EDMT BREAXFOINTS
ssearch » 05.BayesianOptimization » RealExperiments » WGCCM_three_lir
O % Editor - P:\03.Research\05 BayesianOptimization\RealExperim

trajectories.m walker_main.m +

(1) This file can be published to a formatted document. For more
106

107 %% The optimization parameters

108 >

109 - a= [0.512 0.073 0.035 -0.819 -2.2'
110 % estimated

111 ta=[ 0.04723732, 0.38308447, 0.0
112

113 ta=[2.26588617, -0.54511502, 0.13
114

115 sa=[7.72775358e-01, -5.49423726e~
116

117 $ta = [0010110 0.3176);

118 $a = [-0.512 0.053 0.035 -0.319 -6
119 ka=rand(1l,

20

121 - omega 1 = 1.55;

1IN = ¥l = aima rhree Tinkinmena 1_al:

o After tuning with Bayesian

optimization

Oreaxpomts wun Wun

\LFind »  Indent [:| wi ‘= - v  Adva
NAVIGATE EDIT BREANFOINTS

ssearch » 05.BayesianOptimization » RealExperiments » WGCCM_three_lir

(w)
trajectories.m walker_main.m +
@) This file can be published to a formatted document. For more
106
107 %% The optimization parameters
108 %
109 - a= [0.512 0.073 0.035 -0.819 -2.2
110 % estimaved
111 a= 04723732, D.38308447, 0
112
118 ~ a=[2.26588617, -0.54511502, 0.135/
114
115 fa=[7.7277535€e-01, -5.49423726e~
116
117 %a = [0 010110 0.3176]:
118 $a = [-0.512 0.053 0.035 -0.319 -6
119 ta=rand(l,8):
120 I
121 - omega 1 = 1,55;
122 = wh = :1nma rthres Tinkinmena 1_Aal:
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Bayesian Optimization for Tuning Deep Learning

@ Deep learning offers breakthrough in image recognition, speed
recognition and self-driving cars.

@ The DL performance critically depends on the hyperparameters.

e Hyperparameters include
1.
2.

3.

Deep Learning Neural Network

#layers,
#node per layer,
mini-batch size,

learning rate...

Photo from hackernoon.com
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Bayesian Optimization for Tuning Deep Learning

DL hyperparameter Accuracy
x = [xq1, ., Xp] y = f(x)

f )

@ Bayes Opt is better than human expert tuning for deep learning.

0.4*1

—— GP EI MCMC
——— GP EI Opt
0.35+ GP El per Second

S ——— GP EI MCMC 3x Parallel

g Human Expert

S 03f i

2 N

= i

£ 025; NI

TR ;I—i‘ “ .
0.2 e R
0 10 20 30 40 50

Function evaluations

Snoek, J. et al. Practical Bayesian optimization of machine learning algorithms. NIPS 2012.
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BO for Tuning Deep Reinforcement Learning

o Win-rate from Bayesian Optimization in AlphaGo
50% to 66%

Yutian Chen, Aja Huang, Zivu Wang, loannis Antonoglou, Julian Schrittwieser,
David Silver & Nando de Freitas

DeepMind. London, UK
yutianc@google.com

Abstract

During the development of AlphaGo, its many hyper-parameters were tuned with
Bayesian optimization multiple times. This automatic tuning process resulted in
substantial improvements in playing strength. For example, prior to the match
with Lee Sedol, we tuned the latest AlphaGo agent and this improved its win-rate
from 50% to 66.5% in self-play games. This tuned version was deployed in the
final match. Of course, since we tuned AlphaGo many times during its develop-
ment cycle, the compounded contribution was even higher than this percentage. It
is our hope that this brief case study will be of interest to Go fans, and also provide
Bayesian optimization practitioners with some insights and inspiration.
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Short Summary

@ Bayesian optimization is essential for hyper-parameters tuning of
the black-box functions (e.g., machine learning algorithm and
experimental design).

@ Bayesian optimization has both theoretical guarantee and empirical
success that it performs better than random search and grid search
(especially for high dimensions).

@ Bayesian optimization is an active research direction.
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Library for Bayesian Optimization

Package License URL Language Model

SMAC Academic non-commercial license.  http://www.cs.ubc.ca/labs/beta/Projects/SMAC  Java Random forest
Hyperopt BSD https://github.com/hyperopt/hyperopt Python Tree Parzen estimator
Spearmint  Academic non-commercial license.  https://github.com/HIPS/Spearmint Python Gaussian process
Bayesopt GPL http://rmcantin.bitbucket.org/html C++ Gaussian process
PyBO BSD https://github.com/mwhoffman/pybo Python Gaussian process
MOE Apache 2.0 https://github.com/Yelp/MOE Python / C++  Gaussian process

77



MiniBayesOpt

@ Package: vu-nguyen.org/BOTutorial ACML20

@ Github repository: MiniBayesOpt

— Jupyter

Files Running Clusters
Select items to perform actions on them.

(o - | M/

(] 3 mini_bo

] & demo_1dimension_BO.ipynb

] & demo_2dimension_BO.ipynb

] & demo_batch BO.ipynb

[0 & demo_customize your_own_function ipynb

https://qgithub.com/ntienvu/minibo g




MiniBayesOpt

: Jup}’ter Quuit Logout
Files Running Clusters

Select items to perform actions on them. Upioad || New - || &
(J0 |~ Wm/ Mame Last Modified File size
] 3 mini_bo a month ago
[0 & dema_1dimension_BQ.ipynb Running a month ago 507 kB
[0 & dema_2dimension_BO.ipynb Running a month ago 879 kB
[0 & demo_batch_BO.ipynb Running a month ago 365 kB
[0 & deme_customize_your_own_function ipynb Running a month ago 44.7 kB
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Demo in 1D and 2D

@ lllustration on 1d optimization

We want to optimize this unknown function
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Demo using your own function

@ Customize your own black-box function

class YourFunction:
def init (self):

self.bounds = np.asarray(][ # define the search ronge for each
[-5,1@], # variable 1: min=-5 ; max=18
[@,15] # variable 2: min=8; max=15

1

self.input dim = self.bounds.shape[@] # this is 2

# do we want to maximize the function or minimize ?
self.ismax=-1 # set -1 if we want to minimize

self.name="MiniBO" # set the name of your function

# evaluate y=Ff(X)

det evaluate single fx(self,X): # this is actually a Branin function
X = np.reshape(X,self.input_dim)
x1,x2=X[e],x[1]

a,b=1,5.1/(4"np.pi**2)

c,r,s=5/pp.pi,6,186

t=1/(8*np.pi)
y=a*(x2-b*x1*x1+c*x1l-r)**24s*(1-t)*np.cos(x1l)+s

return y*self.ismax # return the (-1) * fx for minimization problem

https://github.com/ntienvu/minibo

ranges of each variables
x1 € [-5,10]
X, €[0,15]

if maximize, setit=1
if minimize, setit=-1

given the input x
return the output y = f(x)
( defined by yourself )
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In

How to use Bayesian Optimization

[6]:

@ Run for multiple iterations

NN=15*myfunction.input_dim

for index in range(@,NH):

bo.select_next_point()

@ Compare with Random search

print(tabulate([[ index,np.round(bo.X_ori[-1],3), np.round(bo

print(

headers=[ "'Iter’, 'Selected x',

idxMax=np.argmax({bo.Y_ori)

print({tabulate([[ np.round({bo.X ori[idxMax],3), np.round(boc.¥ ori
headers=[ 'Best found x',

estimated lengthscale [B.8353949]

Iter
=]
Iter
1
Iter
2
Iter
3
Iter
a
Iter

Selected x
[-8.862 5.967]
Selected x
[-1.818 7.687]
Selected x
[-2.858 18.862]
Selected x
[-4.881 18.984]
Selected x
[-1.63 ©9.679]
Selected x

Output y=Ff(x)
-18.581
Output y=Ff(x)
-18.586
Output y=Ff(x)
-3.158

Output y=Ff(x)
-46.923
Output y=Ff(x)
-9.986

Output y=F(x)

"Output y=f(x)', 'Be

. Performance
w —1 1
pm |
‘Best found f(x)'])) o -2 -
-
Best Observed Value }g e
_____________________ =
-18.5@1 i
Best Observed Value t; -5 -
_____________________ O
-168.586 M -5 4
Best Observed Value -
_____________________ _? T T T T T T T T
-3.158 0 5 10 15 20 25 30 35
Best Observed Value Iteratinﬂ

-3.158
Best Observed Value
-3.158

Best Observed Value
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Question and Answer

~" Dreamstime.com
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